Countable imaginary simple unidimensional theories

نویسنده

  • Ziv Shami
چکیده

We prove that a countable simple unidimensional theory that eliminates hyperimaginaries is supersimple. This solves a problem of Shelah in the more general context of simple theories under weak assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Countable imaginary simple unidimensional theories are supersimple

We prove that a countable simple unidimensional theory that eliminates hyperimaginaries is supersimple. This solves a problem of Shelah in the more general context of simple theories under weak assumptions.

متن کامل

On countable simple unidimensional theories

We prove that any countable simple unidimensional theory T is supersimple, under the additional assumptions that T eliminates hyperimaginaries and that the Dφ-ranks are finite and definable.

متن کامل

Vaught's conjecture for unidimensional theories

In Bue93b] we proved Vaught's conjecture for all superstable theories of nite rank; that is, such a theory has countably many or continuum many countable models. While this proof does settle Vaught's conjecture for unidimensional theories a sharper result can be obtained for these theories and in places the proof can be simpliied. Let T be a properly unidimensional theory with < 2 @ 0 many coun...

متن کامل

Stability and Unidimensionality in Monster Metric Spaces

This article investigates stability for monster metric spaces introduced in [ShUs837] without the additional assumtion of the language L being countable. We prove that any monster metric space which is categorical in any cardinality bigger than |L| is 0-stable in |L| and unidimensional. In particular, the result holds for uncountable continuous theories.

متن کامل

Vaught's conjecture for superstable theories of nite rank

In this paper we prove Vaught's conjecture for superstable theories in which each complete type has nite U? rank. The general idea is to associate with the theory an V ? deenable group G (called the structure group) which controls the isomorphism types of the models. We use module theory to show that when the theory has few countable models and M is a countable model there is a nice decompositi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009